Differentiate y= exp(cos^2(x)+sin^2(x)) by using the chain rule.

First of all instead ,we'll define the chain rule , thus y can be rewritten as y = f (g(x)) , where f(x) = exp (x) and g(x) = cos^2(x) + sin^2(x). Therefore let y = f(u) , dy/dx = dy/du * du/dx , which then gives us dy/dx = exp(cos^2(x)+sin^2(x))du/dx. To find du/dx , we'll use the product rule on both cos^2(x) and sin^2(x) , where g(x)=z(x)h(x) therefore dg/dx = dz/dxh+z*dh/dx. The value of du/dx = 0 , therefore dy/dx =0 . We can check the result if we were to use trigonometric identities , we would find that cos^2(x)+sin^2(x) = 1 , therefore y = exp(1) and dy/dx = 0 .

AJ
Answered by Ayman J. Maths tutor

3725 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) show that (cosx)^2=8(sinx)^2-6sinx can be written as (3sinx-1)^2=2 b)Solve (cosx)^2=8(sinx)^2-6sinx


Differentiate the following: y = 3x^(1/3) + 2


A stone is thrown from a bridge 10m above water at 30ms^-1 30 degrees above the horizontal. How long does the stone take to strike the water? What is its horizontal displacement at this time?


What is the binomial theorem and why is it true?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences