Differentiate y= exp(cos^2(x)+sin^2(x)) by using the chain rule.

First of all instead ,we'll define the chain rule , thus y can be rewritten as y = f (g(x)) , where f(x) = exp (x) and g(x) = cos^2(x) + sin^2(x). Therefore let y = f(u) , dy/dx = dy/du * du/dx , which then gives us dy/dx = exp(cos^2(x)+sin^2(x))du/dx. To find du/dx , we'll use the product rule on both cos^2(x) and sin^2(x) , where g(x)=z(x)h(x) therefore dg/dx = dz/dxh+z*dh/dx. The value of du/dx = 0 , therefore dy/dx =0 . We can check the result if we were to use trigonometric identities , we would find that cos^2(x)+sin^2(x) = 1 , therefore y = exp(1) and dy/dx = 0 .

AJ
Answered by Ayman J. Maths tutor

3806 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation cosec^2(x) = 1 + 2cot(x), for -180° < x ≤ 180°.


Show that r^2(r + 1)^2 - r^2(r - 1)^2 ≡ 4r^3.


How do I plot a graph of y=x^3-9x?


The complex numbers Z and W are given by Z=3+3i and W=6-i. Giving your answers in the form of x+yi and showing how you clearly obtain them, find: i) 3Z-4W ii) Z*/W


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences