How do you solve the following simultaneous equations? 4x-3y=18, 7x+5y=52

First, we need to try and eliminate one of the x or the y variables from both equations. Here, we are going to eliminate the y variable. In order to do this, we need to make the y coefficients equal in both equations, and we can do this by multiplying the first equation through by 5 and the second one through by 3, so that both y variables are equal to 15. We get:

20x-15y=90 21x+15y=156

If we add the two equations together, we will eliminate the y variable, as required, because -15+15=0. Hence, we are left with one equation in terms of x:

41x=246, so x=6.

We can substitute this result into the first equation to get: 120-15y=90, and we can solve this to get y=2.

Hence, the solution to the simultaneous equations is x=6 and y=2.

AO
Answered by Alma O. Maths tutor

4533 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Sean drives from Manchester to Gretna Green. He drives at an average speed of 50 mph for the first three hours. He then breaks and drives the final 150 miles at 30 mph. Sean thinks his average speed is 40 mph ,is he correct?


Work out 5/6 + 3/7. Give your answer as a mixed number.


Solve (72x^3 - 18x)/(12x^2 - 6x) = 0 for x.


solve the simultaneous equations x^2 + y^2 = 5 and 3x+1=y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences