The circle c has equation x^2 + y^2 = 1. The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.

The first step would be to form an equation for the line l. Using y=mx+c, and the information provided in the question, the equation for line l is y=3x+1. To find the coordinates of where c and l intersect, substitute y=3x+1 into the equation of the circle. Expanding the brackets gives 10x^2 +6x=0. Rewritten as x(10x+6), the values of x can be worked out as 0 and -3/5. Substituting these values back into the equation of line l gives you the respective y values. The coordinates for these two points are (0,1) and (-3/5, -4/5)

DP
Answered by Dilan P. Maths tutor

7959 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the values of a, b and c in the equation: (5x + 3)(ax + b) = 10x^2 + 11x + c.


Factorise x^2 + 4x + 4


Three whole numbers are each rounded to the nearest 10. The sum of the rounded numbers is 70. Work out the maximum possible sum for the original three numbers.


The ratio of Adam's age to Bob's age is 1:2. In 12 years time, the ratio of their ages will be 3:5. Calculate their current ages.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning