What is the integral of x^x?

The integral of x^x can be solved by taking logarithms of the formula and getting xln(x) then using integration by parts it is given than u=ln(x) and dv=x therefore u'=1/x and v=(x^2)/2

using uv-(integral of)vu' to find the answer.

NS
Answered by Nathan S. Maths tutor

4826 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 4sinx-cos(pi/2 - x) as a single trignometric function


Rewrite (2+(12)^(1/2))/(2+3^(1/2)) in the form a+b((c)^(1/2))


How would I differentiate y = 3xy + 2x^2 + x^2y^2 ?


How do you differentiate (2x+xe^6x)/(9x-(2x^2)-ln(x)) w.r.t. x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning