What is the integral of x^x?

The integral of x^x can be solved by taking logarithms of the formula and getting xln(x) then using integration by parts it is given than u=ln(x) and dv=x therefore u'=1/x and v=(x^2)/2

using uv-(integral of)vu' to find the answer.

NS
Answered by Nathan S. Maths tutor

4437 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate $$\int xe^x \mathop{\mathrm{d}x}$$.


Use the chain rule to differentiate y=1/x^2-2x-1


Find the derivative for y=5x^3-2x^2+7x-15


Why is (x^3 - 7x^2 +13x - 6) divisible with (x-2)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences