What is the integral of x^x?

The integral of x^x can be solved by taking logarithms of the formula and getting xln(x) then using integration by parts it is given than u=ln(x) and dv=x therefore u'=1/x and v=(x^2)/2

using uv-(integral of)vu' to find the answer.

NS
Answered by Nathan S. Maths tutor

4332 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let y = x^x. Find dy/dx.


Why do we have to use radians instead of degrees?


Differentiate the function y = (x^2)/(3x-1) with respect to x.


The expansion of (1+x)^4 is 1 + 4x +nx^2 + 4x^3 + x^4. Find the value of n. Hence Find the integral of (1+√y)^4 between the values 1 and 0 (one top, zero bottom).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences