A curve is defined by the parametric equations x=t^2/2 +1, y=4/t -1. Find the gradient of the curve when t =2.

Firstly we would differentiate each equation with respect to t to find dx/dt and dy/dt- which gives us dx/dt=t and dy/dt=-4t^-2. Once you have found these you must divide dy/dt by dx/dt (or dy/dt x dt/dx) which is dy/dx= -4t^-3. Then you can sub t=2 into your dy/dx to find the gradient of the curve at that point to find the answer is -1/2.

AV
Answered by Asha V. Maths tutor

7871 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation: x^4 + 2x -xy - y^3 - 10=0. Find dy/dx in terms of x and y.


Find the sum and product of the roots of the equation 2x^2+3x-5=0


Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]


p(x)=2x^3 + 7x^2 + 2x - 3. (a) Use the factor theorem to prove that x + 3 is a factor of p(x). (b) Simplify the expression (2x^3 + 7x^2 + 2x - 3)/(4x^2-1), x!= +- 0.5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning