A curve is defined by the parametric equations x=t^2/2 +1, y=4/t -1. Find the gradient of the curve when t =2.

Firstly we would differentiate each equation with respect to t to find dx/dt and dy/dt- which gives us dx/dt=t and dy/dt=-4t^-2. Once you have found these you must divide dy/dt by dx/dt (or dy/dt x dt/dx) which is dy/dx= -4t^-3. Then you can sub t=2 into your dy/dx to find the gradient of the curve at that point to find the answer is -1/2.

AV
Answered by Asha V. Maths tutor

7364 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that 2log2(x+15) -log2(x) = 6, show that x^2-34x+225=0


Why does the second derivative tell us something about a function?


A geometric progression has first term 3 and second term -6. State the value of the common ratio.


Edexcel January 2007 - Question 4 (Rates and Differential Equations)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences