A curve is defined by the parametric equations x=t^2/2 +1, y=4/t -1. Find the gradient of the curve when t =2.

Firstly we would differentiate each equation with respect to t to find dx/dt and dy/dt- which gives us dx/dt=t and dy/dt=-4t^-2. Once you have found these you must divide dy/dt by dx/dt (or dy/dt x dt/dx) which is dy/dx= -4t^-3. Then you can sub t=2 into your dy/dx to find the gradient of the curve at that point to find the answer is -1/2.

AV
Answered by Asha V. Maths tutor

7865 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find, in radians, the general solution of the equation cos(3x) = 0.5giving your answer in terms of pi


What is the equation of the tangent at the point (2,1) of the curve with equation x^2 + 3x + 4.


What does differentiation actually do?


find the diffrential of 3sin2x+4cos2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning