Show that the radius of an orbit may be expressed as follows: R^3=((GM)/4*pi^2)T^2

Start with Newton's Law of Gravitation: F=(GMm)/R^2 (1) Since orbits are assumed to be circular recall the equation for centripetal force: F=(mv^2)/R (2) We can now equate these 2 forces due to them being action-reaction pairs (Newton's 3rd Law) (GMm)/R^2= (mv^2)/R We notice that small m on both sides cancel and 1/R^2 may be reduced to 1/R on the LHS giving an equation for v^2: v^2=GM/R (3) Since we have a circular orbit we can use the radial velocity equation: v=Rw (4) We then sub (4) into (3) R^2w^2=GM/R (5) Remember w=2pi/T (6) this can be substituted in and the R terms may be collected to give R^3 (4pi^2/T^2)R^3=GM (7) Finally divide by 4pi^2/T^2 to give the correct equation R^3=((GM)/4*pi^2)T^2 (8)

LM
Answered by Liam M. Physics tutor

5101 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The Σ0 baryon, composed of the quark combination uds, is produced through the strong interaction between a π+ meson and a neutron. π+ + n →Σ0 + X What is the quark composition of X?


Find the angle at which total internal refraction takes place when light is going from glass to air.


When catching a ball, a cricketer moves his hands for a short distance in the direction of travel of the ball as it makes contact with his hands. Explain why this technique results in less force being exerted on the cricketer's hands


How can I find out the Young's modulus of a material?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences