Integrate ∫x^4+5x^3+sin(2x) dx

∫x^4+5x^3+sin(2x) dx So a basic rule for x functions is that 1. Add 1 to the power 2. divide by the new power. So lets do this for the 2 x terms 1/5x^5+5/4x^4 Now lets look at the sin(2x). A general rule for ∫sin(ax)dx= -1/a(cos(ax)). So now we look at our specific example and we find that ∫sin(2x)dx=-1/2(cos(2x)) So let's put it all together now and remember to add the constant of integration. ∫x^4+5x^3+sin(2x) dx= 1/5x^5+5/4x^4-1/2(cos(2x))+C

LM
Answered by Liam M. Maths tutor

6151 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many roots does the equation x^2 = x + 12 have and what are they?


y = 4x / (x^2 + 5). Find dy/dx.


Given that y = 4x^5 - 5/(x^2) , x=/=0 , find a)dy/dx b)indefinite integral of y


Given that y=sin2x(3x-1)^4, find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning