The Large Hadron Collider (LHC) of circumference 27km uses magnetic fields to accelerate a proton repeatedly in a circular path. Calculate the flux density of a uniform magnetic field required for the proton to travel at a tenth of the speed of light.

Firstly, we must clearly set out the information we have. The particle in question is a proton, which has a mass of 1.67e-27 kg, and a charge of 1.6e-19 C. The path it takes has a circumference of 27000m, meaning the radius of its path is (27000/(2pi)), which is 4297m. The speed it is travelling at is c/10, or 3e7 m/s. The particle takes a circular path, meaning there must be a centripetal force acting on it, and this is given by F = (mv^2)/r. In addition the charged particle is moving through a magnetic field, which means it experiences a force perpendicular to its travel, given by F = Bqv, where B is the magnetic flux density, q is the charge of the particle, and v is the velocity it is travelling at. This is the only force that can provide the centripetal force required for the proton to maintain its path, meaning the above two equations must be equal: (mv^2)/r = Bqv. We want to find the value of B, so rearranging the above equation, we find that: B=(mv)/(rq) =(1.67e-27 * 3e7)/(4297 * 1.6e-19) = 7.29e-5 T

AM
Answered by Aashish M. Physics tutor

7473 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe simple harmonic motion (SHM). Sketch a displacement-time graph for a particle undergoing SHM and the corresponding velocity-time and acceleration-time graphs. Use these graphs to describe the relationship between accleration and displacment.


What is the Young's modulus of a material?


A projectile is fired out of a cannon at 50 km/s, at an angle of 30 degrees and an elevation of 10m from the ground. How long does it take for the projectile to hit the ground?


What is the difference between a longitudinal and a transverse wave?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning