Answers>Maths>IB>Article

Find the area under the curve of f(x)=4x/(x^2+1) form x = 0 to x = 2.

Solution of all integration problems starts with investigation of a given function. We can’t represent it with standard functions, i.e. linear, power or trigonometric. Second step would be to try substitution method, were we substitute f(x) with other function, let’s say u(x). Have the same argument – x, but are different. However, it is not some random function. We divide our initial function f(x) into u(x) and u’(x), new function and new function’s derivative. Essentially, this is called u substitution method.

Now, if you look closely, f(x) consist from linear function (4x) and quadratic (x^2 + 1). Let’s try u substitution, assuming that u(x)= x^2 + 1. Therefore, u’(x) = 2x. 2x is not a 4x, but we could factor out 2, which gives us 2*2x, or 2 * u’(x). Thus, f(x) = (2 * u’(x)) / u(x) = 2 (u’(x) / u(x)). u’(x) is the same as du(x) / dx. 2 ∫(1 / u(x)) * (du(x) / dx) dx. We imagine as dx is divided by dx and we are left with du(x). ∴ 2 ∫1 / u(x) du(x) = 2 * ln(u(x)) + C. Now, substituting u(x) = x^2 + 1 will give us: 2 * ln(x^2 + 1) + C. To find an area under a curve we should subtract integral with x = 0 from integral with x = 2. Area = (2 * ln(2^2 + 1) + C) –(2 * ln(0^2 + 1) + C) = 2 * ln(5) – 2 * ln(1) = 2 * ln(5) And we are done.

ID
Answered by Igors D. Maths tutor

5499 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Let f(x) = px^2 + qx - 4p, where p is different than 0. Showing your working, find the number of roots for f(x) = 0.


How should I approach a proof by induction question?


Talk about the relation between differentiability and continuity on a real function and its derivative.


How does Euclid's algorithm give solutions to equations?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences