Find dy/dx from the equation 2xy + 3x^2 = 4y

Firstly we must notice that we can differentiate each term separately.

Starting with the 2xy term, we must use the product rule as x and y are two variable that will differentiate. Setting u=2x and v=y and using (uv)'= uv' + vu' we get the term 2y+2xy'.

For the 3x^2 term, we can differentiate as usual to get 6x.

For the 4y term, we can simply differentiate to get 4y'.

Putting this all together we get: 2y+2xy'+6x=4y'.

Finally, rearranging gives dy/dx=(3x+y)/(2-x)

MM
Answered by Murray M. Maths tutor

4530 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that (1-cos2x)/sin(2x) = tan(x) where x ≠ nπ/2


2(x^2)y + 2x + 4y – cos (PI*y) = 17. Find dy/dx using implicit differentiation.


Why does the product rule for differentiating functions work?


Solve the following equation: 4(sinx)^2+8cosx-7=0 in the interval 0=<x=<360 degrees.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning