Find dy/dx from the equation 2xy + 3x^2 = 4y

Firstly we must notice that we can differentiate each term separately.

Starting with the 2xy term, we must use the product rule as x and y are two variable that will differentiate. Setting u=2x and v=y and using (uv)'= uv' + vu' we get the term 2y+2xy'.

For the 3x^2 term, we can differentiate as usual to get 6x.

For the 4y term, we can simply differentiate to get 4y'.

Putting this all together we get: 2y+2xy'+6x=4y'.

Finally, rearranging gives dy/dx=(3x+y)/(2-x)

MM
Answered by Murray M. Maths tutor

3908 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = f(x) and passes through the point (4, 22). Given that f ′(x) = 3x^2 – 3x^(1/2) – 7, use integration to find f(x), giving each term in its simplest form.


A curve C has equation y = x^2 − 2x − 24sqrt x, x > 0. Prove that it has a stationary point at x=4.


Let p(x) =30x^3 - 7x^2 -7x + 2. Prove that (2x+1) is a factor of p(x).


By using the substitution, x = 2sin(y) find the exact value of integral sqrt(1/3(4-x^2)) dx with limits 0 and 1.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences