Find dy/dx from the equation 2xy + 3x^2 = 4y

Firstly we must notice that we can differentiate each term separately.

Starting with the 2xy term, we must use the product rule as x and y are two variable that will differentiate. Setting u=2x and v=y and using (uv)'= uv' + vu' we get the term 2y+2xy'.

For the 3x^2 term, we can differentiate as usual to get 6x.

For the 4y term, we can simply differentiate to get 4y'.

Putting this all together we get: 2y+2xy'+6x=4y'.

Finally, rearranging gives dy/dx=(3x+y)/(2-x)

MM
Answered by Murray M. Maths tutor

4517 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 4x^3 – 5/(x^2) , x =/= 0, find in its simplest form dy/dx.


A block of mass 5kg is at rest on a smooth horizontal table, and connected to blocks of 3kg and 4kg which are hanging by strings via pulleys on either end of the table. Find the acceleration of the system and the tension in each string.


Integrate e^(2x)


Factorise f(x)=3x^3+8x^2-20x-16 completely


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning