Differentiate y = (3x^2 + 1)^2

Looking at this question the first thing we should notice is that there is a an x squared inside a bracket which is also squared. As there is function inside a function we must use the chain rule. The simple way to think about applying the chain rule in this case is to 'differentiate the outside' and times that by what you get when you 'differentiate the inside'. So first of all we differentiate the bracket meaning we times the whole thing by 2 (because the bracket is to the power of 2) then take 1 off the power meaning we get 2(3x^2 + 1)^2-1 = 2(3x^2 + 1). Differentiating the inside means differentiating the function 3x^2 + 1. To do this we times 3x^2 by 2 (as the x is to the power 2) and minus 1 from the power to get 6x. As the one is a constant, when differentiated this becomes 0. To apply the chain rule we must times both of these together: 2(3x^2 + 1) * 6x = 12x(3x^2 + 1). That is your final answer

HB
Answered by Hannah B. Maths tutor

5172 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y=((3x+1)^2)*cos(3x), find dy/dx.


Mechanics 1: How do you calculate the magnitude of impulse exerted on a particle during a collision of two particles, given their masses and velocities.


What are the main factors when deciding whether or not the Poisson distribution is a suitable model?


I know how to integrate, but I still never see any real world example of it, so it is difficult to understand. Why is it useful?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences