Answers>Maths>IB>Article

Differentiate x^3 + y^4 = 34 using implicit differentiation

An implicity function is one that is not expressed in the form y = f(x) such as the equation in the question. Instead of rearranging the equation to make y the subject, the equation can be differentiated using a technique called implicity differentiation. This involves differentiating each term on both sides of the equation. Differentiating x^3 will give 3x^2 and differentiating 34 will give 0. However differentiating y^4 will give (4y^3) X (dy/dx). This is achieved by using the chaing rule whereby d(y^4)/dx = (d(y^4)/dy) X (dy/dx).

OM
Answered by Olavo M. Maths tutor

2425 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

The quadratic equation 2x^2-8x+1 = 0 has roots a and b. Find the value of a + b and ab


Talk about the relation between differentiability and continuity on a real function and its derivative.


Solve for x in the following equation: e^x + 10e^(-x) = 7


Identify and classify the stationary points of f using the second derivative test, where f is the function given below


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning