Find the integral of xcosx(dx)

Firstly, let's split the equation "xcosx" into two parts to integrate them separately. 1) Let u=x and dv/dx=cosx 2)As the integral of x is 1, du/dx=1 3)To find v, we integrate cosx to get v=sinx Using the formula: The integral of x.dv/dx=uv-integral of v.du/dx So, to reiterate we have: u=x du/dx=1 v=cosx dv/dx=sinx So, using the formula, we need to find uv and the integral of v.du/dx 1) uv=x.sinx=xsinx 2) v.du/dx=sinx.1=sinx By using the formula as listed above: 1) xsinx-integral(sinx)= xsinx-(-cosx)+c= xsinx+cosx+c Therefore, the answer is xsinx+cosx+c

AF
Answered by Amelia F. Maths tutor

16225 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If I have the equation of a curve, how do I find its stationary points?


4. The curve C has equation 4x^2 – y3 – 4xy + 2y = 0. P has coordinates (–2, 4) lies on C. (a) Find the exact value of d d y x at the point P. (6) The normal to C at P meets the y-axis at the point A. (b) Find the y coordinate of A


C and D are two events such that P(C) = 0.2, P(D) = 0.6 and P(C|D) = 0.3. Find P(D|C), P(C’ ∩ D’) & P(C’ ∩ D)


How do you determine the nature of a graphs stationary point? e.g y = 1+2x-x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences