Find the exact value of x from the equation 3^x * e^4x = e^7

To begin to solve this equation we must take natural logarithms of both sides of the equation. This gives: ln(3^x*e^4x) = lne^7 Then we can use the log rules on the left hand side to expand it slightly to: ln3^x + lne^4x = lne^7 We can then bring down the powers for all these logarithms to give: xln3 + 4xlne = 7lne We know that lne = 1 as lne means e to what power gives e? The answer is therefore 1 = lne This gives us from the previous equation: xln3 + 4x = 7 Now we use simply rearrangement to give: x(4 + ln3) = 7 x = 7/(4 + ln3)

CB
Answered by Chris B. Maths tutor

13896 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary point(s) on the curve 2xsin(x)


The curve C has equation 2x^2y+2x+4y-cos(pi*y)=17 A) Use implict differenciation to find dy/dx B) point P(3,0.5) lies on C, find the x coodinate of the point A at which the normal to C at P meets the x axis.


Let f(x)=e^x sin(x^2). Find f'(x)


The line L has equation y = 5 - 2x. (a) Show that the point P (3, -1) lies on L. (b) Find an equation of the line perpendicular to L that passes through P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences