The line AB has equation 3x + 5y = 7. Find the gradient of line AB.

First, let's make y the subject of the equation.

Let's achieve this by having only y on the left hand side of the equation. To do this we need to minus 3x from both sides of the equation. This leaves us with: 5y = 7 - 3x. Now we must divide both sides by 5. This leaves us with y = 1.4 - 3/5x.

We know that the gradient of a straight line can be found by looking at the number in front of the x. (y = mx + c) In this case, that number, or the gradient, is -3/5.

TO
Answered by Tom O. Maths tutor

5270 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the function y = cos(sin(2x))?


Line AB has equation 4x+5y+2=0. If the point P=(p, p+5) lies on AB, find P . The point A has coordinates (1, 2). The point C(5, k) is such that AC is perpendicular to AB. Find the value of k.


Find ∫ ( 2x^4 - 4x^(-0.5) + 3 ) dx


Find, using calculus, the x coordinate of the turning point of the curve with equation y=e^3x cos 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning