Solve the simultaneous equations: y=2x+2, y=x^2 - 1

The solution to this question can be obtained algebraically using substitution. As both equations are equal to y, this also means they are equal to each other. So firstly, substitute the simpler equation which is y=2x+2 into the second equation giving 2x+2 = x^2 - 1. Re-arrangement of this gives x^2 - 2x + 3 = 0. Using quadratic equation theory, this then becomes (x - 3)(x + 1)=0. Any equation that equals zero must have another zero value on the other side of the equation. Therefore when y is 0, x is either 3 or -1. Using these two x values, we can work out the y values from the original equations. Using the simpler equation y=2x + 2, if x is 3 then y=2*3 + 2= 6+2 = 8 and if x is -1, y=2(times-1) + 2 = -2+2=0. Just to check these values are correct, you can then plug them in to the second equation and the same x and y values should be obtained

SN
Answered by Sahil N. Maths tutor

12449 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

find the roots of the equation 7x^2+11x-2=0 in exact form


In 2017 the number of teachers in a school was 20. The number of teachers doubles each year. If in 2019 3/5 of the teachers are female how many male teachers are there in 2019?


f(x) = (x+1)^2 and g(x) = 2(x-1); Show that gf(x) =2x(x+2)


How can I apply trigonometry rules to an isosceles triangle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences