Find the first differential with respect to x of y=tan(x)

To answer, we must be familiar with several trigonometric identities and expressions; first notice that tan(x)=sin(x)/cos(x). Now our function is a quotient of two functions of x that we can easily differentiate. Using the quotient rule gives dy/dx=[cos(x)cos(x)-sin(x)(-sin(x))]/cos^2(x). The numerator simplifies into cos^2(x)+sin^2(x), which our trigonometric identities tell us is just equal to 1. Hence we have dy/dx=1/cos^2(x), and as sec(x)=1/cos(x), we can express this as dy/dx=sec^2(x).

AJ
Answered by Alex J. Maths tutor

7380 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following, y=(2x-4)^3


How can I try and solve this differentiation, I don`t understand it?


How do I work out (2+y)^4 using the binomial expansion?


the graph y = 3/((1-4x)*(1/2)) has a shaded region between x = 0 and x = 2, find area of the region


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences