Find the x-Coordinate of the minimum point of the function: f(x) = x^2 + 2x - 5

One of the easiest ways to find a minimum/ maximum point is using differentiation.

The derivative of the function f(x) is usually written as dy/dx or f'(x) and is essentially a function that tells us the gradient of f(x) at any point x.

One of the key characteristics of a minimum/ maximum of a function is the way the gradient behaves at & around it.

For a minimum point (say m), the function is decreasing before and increasing after m. i.e. it as a negative gradient (f'(x) < 0) to the left of m and a positive gradient (f'(x) > 0) to the right of m (This is reversed for a maximum). In order for the sign of the gradient to change, it has to pass through 0, and this is exactly where m is. i.e. f'(x) = 0.

So if differentiate f(x), we get f'(x) = 2x + 2 and we want to set f'(x) = 0 to find the x value of the minimum, m.

f'(x) = 0 = 2x +2 2x + 2 = 0 2x = -2 (subtract 2 on both sides) x = -1 (divide by 2 on both sides)

And so we have the x-coordinate of the minimum at x = -1; we can check that this is indeed a minimum by taking a point to the left of -1 e.g. -2 and a point to the right e.g. 0. by inputting these points into f'(x) and checking their signs we can confirm the behaviour of f(x) around x = -1.

f'(-2) = -2 < 0 and f'(0) = 2 > 0 - which confirms that the gradient is indeed negative before m and positive after and so m ( x= -1) is the minimum of f(x).

SM
Answered by Sachin M. Maths tutor

12665 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorising Quadratics: x ^2 ​​ − x = 12


Solve the inequality 5x^2 + x - 3 = 1


Make x the subject 2x+3=3x-1


Kevser buys 5kg of sweets for £10. She separates the sweets so that there are 250g of sweets in each bag. She sells each bag for 65p. She sells all bags. What is her percentage profit?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning