Differentiate the function y = cos(sin(2x))?

To differentiate this function you will need the chain rule - differentiating what's inside the brackets and multiplying it by differentiating what's outside the brackets. In this case sin(2x) goes to 2cos(2x) and cos(sin(2x)) goes to - sin(sin(2x)). Therefore dy/dx = -2cos(2x)sin(sin2x)

GM
Answered by Greg M. Maths tutor

10342 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x=t^2/2 +1 and y=4/t -1. Find the gradient of the curve at t=2 and an equation for the curve in terms of just x and y.


Why do we get cos(x) when we differentiate sin(x)?


Let p(x) = 30 x^3 -7 x^2 - 7 x + 2. Prove that (2x + 1) is a factor of p(x) and factorise p(x) completely.


Solve the differential equation : dy/dx - x^3 -5x = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences