How to complete the square?

This is a handy trick for quadratic equations ax^2 + bx + c = 0.

e.g. (x^2 + 5x + 6). So a = 1, b = 5 and c = 6.

To complete the square, let x^2 + 5x + 6 = 0. Then, take 6 to the other side to get x^2 + 5x = -6.

Now focus on x^2 + 5x. You need to divide 5 by 2 ( = 2.5) and write in the form (x + (b/2))^2 - (b/2)^2 = -6. So you get (x + 2.5)^2 - (2.5)^2 = -6. This equals to (x + 2.5)^2 = 0.25 as (2.5)^2 - 6 = 0.25. Then rearrange for x. (x + 2.5) = +- 0.5. So x = -3 and x = -2.

JP
Answered by Jigar P. Maths tutor

4365 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following: y = 3x^(1/3) + 2


What is the equation of the normal line to the curve y = 3x^3 - 6x^2 at the point (1, 4)?


Given the intensity of A-Level studies, what is the best way one can go about ensuring all tasks are completed in time?


Calculate the shaded finite region between the curve and the axis for the curve: 3x^2 +11x -4 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning