Simplify the surd sqrt(48)

When simplifying surd expressions we want to look for square numbers that are factors of the number inside the square root. If we list the square numbers (which are numbers that are the result of squaring another number) up to 48 we have 1, 4, 9, 16, 25 and 36 (1^2, 2^2, ... 6^2). Now we see that 1, 4 and 16 are all factors of 48. Choosing the highest we know that 16 x 3 = 48 so the surd becomes sqrt(16x3). Next, we know that the square root of 16 is 4 so we can apply this and take it outside of the square root giving 4*sqrt(3) (read as 4 root 3). This 4 comes from square rooting 16. As 3 cannot be split up into any more square factors, 4 root 3 is the final answer.

MH
Answered by Matthew H. Maths tutor

35371 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A metal Sphere of radius Ym is melted down and remade into a cylinder of the same volume with height Ym with circular ends of radius 3m, find Y


Make x the subject of the following formula: 5(3x -2y) = 14 - 2ax


How do I solve an algebraic expression when the unknown is on both sides of the equals sign?


How do you go about rearranging equations where the required subject appears on both sides? Such as making x the subject of 7x + a = 3x + b.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning