Differentiate y = (x^2 + 3)^2

We have to use the chain rule here. If we set u to the inside of the bracket, u = x^2 + 3 and differentiating we get du/dx = 2x. Now the original expression becomes y = u^2. Differentiating this with respect to x, dy/dx = du/dx * dy/du using the chain rule. dy/du = 2u and du/dx is 2x so the final answer dy/dx = 2x*2(x^2 + 3) = 4x(x^2 + 3).

MH
Answered by Matthew H. Maths tutor

7092 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the differential equation dy/dx = y/x(x + 1) , given that when x = 1, y = 1. Your answer should express y explicitly in terms of x.


Find the general solution to the differential equation dy/dx = y/(x+1)(x+2)


What are differences between speed and velocity, velocity and speed and acceleration?


Integrate the following expression with respect to x, (2+4x^3)/x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning