Differentiate y = (x^2 + 3)^2

We have to use the chain rule here. If we set u to the inside of the bracket, u = x^2 + 3 and differentiating we get du/dx = 2x. Now the original expression becomes y = u^2. Differentiating this with respect to x, dy/dx = du/dx * dy/du using the chain rule. dy/du = 2u and du/dx is 2x so the final answer dy/dx = 2x*2(x^2 + 3) = 4x(x^2 + 3).

MH
Answered by Matthew H. Maths tutor

7655 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the value of dy/dx at the point where x = 2 on the curve with equation y = x^ 2 √(5x – 1).


If I had an equation with both 'x' and 'y' present, how would I find the gradient?


How would I use implicit differentiation to differentiate functions such as: y=tan^-1(ax^2+b) in the form of dy/dx=.....?


Find the equation of the tangent of the curve y = (8x)/(x-8) at the point (0,0)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning