find the coordinate of the maximum value of the function f(x) = 9 – (x – 2)^2

Firstly you would start by differentiating the function and equating it to zero as the gradient of the function at the maximum point is zero. to differentiate this function you would use the chain rule since it is in the form f(x)=h(g(x)). -2(x-2) = 0 then you can see that the only solutions to this equation is when x = 2 so you plug that back into the equation to get : y = 9 - (2-2)^2 = 9 so coordinate is (2,9).

SB
Answered by Sruthi B. Maths tutor

3486 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate e^x^2


An 1kg ball collides normally with a fixed vertical wall. Its incoming speed is 8 m/s and its speed after the collision is 4 m/s . Calculate the change in momentum of the particle. If the collision lasts 0.5 s calculate the impact force.


Question 3 on the OCR MEI C3 June 2015 paper. Find the exact value of Integral x^3 ln x dx between 1 and 2.


How was the quadratic formula obtained.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences