find the coordinate of the maximum value of the function f(x) = 9 – (x – 2)^2

Firstly you would start by differentiating the function and equating it to zero as the gradient of the function at the maximum point is zero. to differentiate this function you would use the chain rule since it is in the form f(x)=h(g(x)). -2(x-2) = 0 then you can see that the only solutions to this equation is when x = 2 so you plug that back into the equation to get : y = 9 - (2-2)^2 = 9 so coordinate is (2,9).

SB
Answered by Sruthi B. Maths tutor

3839 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given a curve has the equation f'(x) = 18x^2-24x-6 and passes through the point (3,40), use integration to find f(x) giving each answer in its simplest form.


Solve the ODE y' = -x/y.


In the triangle ABC, AB = 16 cm, AC = 13 cm, angle ABC = 50 and angle BCA= x Find the two possible values for x, giving your answers to one decimal place.


Why is ꭍ2x=x^2+C?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning