Find the derivative of the curve e^(xy) = sin(y)

First we have to identify that implicit differentiation is used to solve this question. We can differentiate the first the LHS first, by using the chain rule, we know that the differentiation of e^(xy) is e^(xy) times the differentiation of (xy). This becomes (y + xy') by using implicit differentiation. Sin(y) differentiates into y'cos(y). Rearranging the equation to get y' as the subject gives you (ye^(xy))/((cos(y)+xe^(xy))

GG
Answered by Gouri G. Maths tutor

7312 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the centre and radius of the circle with the equation x(x-2)+y(y+6)+4=0 ?


Use integration by parts to find the integral of ln x by taking ln x as the multiple of 1 and ln x


Find the co ordinates and nature of the turning points of the curve C withe equation, y=2x^3-5x^2-4x+2


Prove n^3 - n is a multiple of 3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences