Find the derivative of the curve e^(xy) = sin(y)

First we have to identify that implicit differentiation is used to solve this question. We can differentiate the first the LHS first, by using the chain rule, we know that the differentiation of e^(xy) is e^(xy) times the differentiation of (xy). This becomes (y + xy') by using implicit differentiation. Sin(y) differentiates into y'cos(y). Rearranging the equation to get y' as the subject gives you (ye^(xy))/((cos(y)+xe^(xy))

GG
Answered by Gouri G. Maths tutor

7279 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the shortest distance between the line L: x=1+t, y=1+2t, z=1-t and the point A: (2,3,4)


Find the radius and centre of the circle given x^2+4x+y^2+2y=20


Given that y=(4x+1)^3*sin(2x) , find dy/dx


Differentiate the following with respect to x: e^(10x) + ln(6x+2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences