Find the derivative of the curve e^(xy) = sin(y)

First we have to identify that implicit differentiation is used to solve this question. We can differentiate the first the LHS first, by using the chain rule, we know that the differentiation of e^(xy) is e^(xy) times the differentiation of (xy). This becomes (y + xy') by using implicit differentiation. Sin(y) differentiates into y'cos(y). Rearranging the equation to get y' as the subject gives you (ye^(xy))/((cos(y)+xe^(xy))

GG
Answered by Gouri G. Maths tutor

7242 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Tom drink drives two days a week, the chance of him being caught per day is 1 in 100. What is the chance he will not be driving after a) one week? b) one year?


The Volume of a tin of radius r cm is given by V=pi*(40r-r^2-r^3). Find the positive value of r for which dV/dr=0 and find the value of V for this r.


Find the integral of sin^2(X)


Find the derivative of f(x) = 2xe^x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences