Answers>Maths>IB>Article

Talk about the relation between differentiability and continuity on a real function and its derivative.

In a real 2-Dimensional function f(x) on the X-Y plane, we have the following relations between these concepts: i) f'(x) is continuous if and only f(x) is differentiable; in fact, the continuity of f'(x) ensures that there are no points where the derivative tends to infinity, or has a possible multiple value. (picture as additional explanation) ii) f(x) differentiable does not imply f(x) continuous, since we may have a function that is shifted up at a certain point, so it keeps to be differentiable, since there is no double derivative at that point, but the limits of x that tends to that point are different. (picture that function using a grapher) iii) f(x) continuous does not imply f(x) differentiable. In fact a simple counter example could be f(x)=|x|. At x=0, f(x) is continuous, checkable using the definition. But the derivative assumes a double value at x=0, f'(0)=1 and f'(0)=-1. Therefore we found a counter-example.

MM
Answered by Michelangelo M. Maths tutor

2411 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Consider the arithmetic sequence 2, 5, 8, 11, ... a) Find U101 b) Find the value of n so that Un = 152


Let f(x) = px^2 + qx - 4p, where p is different than 0. Showing your working, find the number of roots for f(x) = 0.


The fifth term of an arithmetic sequence is equal to 6 and the sum of the first 12 terms is 45. Find the first term and the common difference.


What is de Moivre's theorem?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning