Answers>Maths>IB>Article

Talk about the relation between differentiability and continuity on a real function and its derivative.

In a real 2-Dimensional function f(x) on the X-Y plane, we have the following relations between these concepts: i) f'(x) is continuous if and only f(x) is differentiable; in fact, the continuity of f'(x) ensures that there are no points where the derivative tends to infinity, or has a possible multiple value. (picture as additional explanation) ii) f(x) differentiable does not imply f(x) continuous, since we may have a function that is shifted up at a certain point, so it keeps to be differentiable, since there is no double derivative at that point, but the limits of x that tends to that point are different. (picture that function using a grapher) iii) f(x) continuous does not imply f(x) differentiable. In fact a simple counter example could be f(x)=|x|. At x=0, f(x) is continuous, checkable using the definition. But the derivative assumes a double value at x=0, f'(0)=1 and f'(0)=-1. Therefore we found a counter-example.

Answered by Michelangelo M. Maths tutor

1634 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Given that sin(x) + cos(x) = 2/3, find cos(4x)


How do I derive the indefinite integral of sine?


Two functions, y1 & y2, are given by y1=x^2+16x+4; y2=2(3x+2). Find analytically the volume of the solid created by revolving the area between the two curves by 2pi radians around the x-axis. N.B. y2>y1 on the interval between the points of intersection.


Prove that (sinx)^2 + (cosx)^2 = 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy