How would I find the approximate area enclosed by the expression e^x*sin(x)*x^3 on an infinite scale?

The area under a curve is analytically calculated using the integral of the function. The integral of the function above could be calculated using integration by parts twice, considering that 3 functions are multiplied together, this could messy and a bit tricky. To work out an approximate area the shapes of the individual graphs of e^x, sin(x) and x^3 can be considered individually.

Sin(x) oscillates between 1 and -1 continuously, meaning that the area under the curve above and below the x axis will be approximately equal and opposite (positive for above the x axis and negative for below) on an infinite x axis resulting in the area under the curve being approximately zero.

The same goes for the graph of x^3. Where x is positive so are the y coordinates, where x is negative the y coordinates follow suit, meaning that the areas above and below the x axis will be approximately equal again, cancelling one another out.

Therefore, the only integral that actually needs to be considered is the area under y=e^x, which is y=e^x.

MW
Answered by Matthew W. Maths tutor

3164 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Functions: If f(x)=3x^2 - 4 and g(x) = x + 3, 1) Evaluate f(3), 2) Find the inverse of f(x) (f^-1(x)), 3)Find fg(x).


Prove that 1/(tanx) + tanx = 1/sinxcosx


Show that (sec(x))^2 /(sec(x)+1)(sec(x)-1) can be written as (cosec(x))^2.


For a curve of gradient dy/dx = (2/(x^2))-x/4, determine a) d^2y/dx^2 b) the stationary point where y=5/2 c) whether this is a maximum or minmum point and d) the equation of the curve


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning