How would I find the approximate area enclosed by the expression e^x*sin(x)*x^3 on an infinite scale?

The area under a curve is analytically calculated using the integral of the function. The integral of the function above could be calculated using integration by parts twice, considering that 3 functions are multiplied together, this could messy and a bit tricky. To work out an approximate area the shapes of the individual graphs of e^x, sin(x) and x^3 can be considered individually.

Sin(x) oscillates between 1 and -1 continuously, meaning that the area under the curve above and below the x axis will be approximately equal and opposite (positive for above the x axis and negative for below) on an infinite x axis resulting in the area under the curve being approximately zero.

The same goes for the graph of x^3. Where x is positive so are the y coordinates, where x is negative the y coordinates follow suit, meaning that the areas above and below the x axis will be approximately equal again, cancelling one another out.

Therefore, the only integral that actually needs to be considered is the area under y=e^x, which is y=e^x.

MW
Answered by Matthew W. Maths tutor

3304 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0


Find the first three terms in the expansion of (4-x)^(-1/2) in ascending powers of x.


A block of mass 5kg is on a rough slope inclined at an angle of 30 degrees to the horizontal, it is at the point of sliding down the slope. Calculate the coefficient of friction between the block and the slope.


A particle P moves with acceleration (-3i + 12j) m/s^2. Initially the velocity of P is 4i m/s. (a) Find the velocity of P at time t seconds. (b) Find the speed of P when t = 0.5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning