Why is the derivative of x^2 equal to 2x?

Differentiation is finding the slope of a graph; how steep it is at some point. In this case, we want to find out how steep the graph of x^2 is. To do this, we could look at the slope between two points on the line, and then move these points closer and closer, with the line between them getting closer and closer to the true slope of the curve. When we do this algebraically, we can find the slope of the line between the points with x-coordinates x and x+h. This is the change in y divided by the change in x, which is ((x+h)^2-x^2)/h. After some work, this is equal to 2x+h, which gets closer and closer to 2x as h gets closer to 0, which is the slope of the curve, or the derivative.

LH
Answered by Lawrence H. Maths tutor

14891 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to transform graphs of functions?


Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx


(Using the Quotient Rule) -> Show that the derivative of (cosx)/(sinx) is (-1)/(sinx).


Find the area R under the curve when f(x)=xcos(x) between the limits x=0 and x=2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences