How do I find f'(x) for f(x)=4x^3+x^2+5x+8?

This question require you to differentiate. The general rule for this format of differentiation is to multiply the number in front of the x by the power of the x and then reduce the power by one (in formula terms this is f'(x)=nax^n-1). It's that simple. So for 4x^3 the number in front of the x is 4 and 3 is the power of the x. So 43=12. Then the power of the x, the 3, reduces by one becoming a 2. Therefore, the result is 12x^2. You would then do the same thing for the remaining parts of the equation. x^2 becomes 2x: x^2 is the same as 1x^2 so we do the number in front multiplied by the power (12=2) and then reduce the power by one (2-1=1). Therefore we get 2x^1 = 2x. 5x becomes simply 5: 5x=5x^1, multiply front: 5*1=5, reduce power: 1-1=0. As x^0=1, 5x^0= 5. 8 disappears when differentiated: This is because 8=8x^0 so 8x0=0. So overall when differentiating this equation we get f'(x) = 12x^2 + 2x + 5.

NC
Answered by Naomi C. Maths tutor

22215 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the expansion of (x + 4)(x - 5) ?


Sarah plans to paint a rectangular wall of dimensions 8.7m x 2.3m. A tin of paint costs £16.10 and covers 6 metres squared. Sarah has a budget of £56, can she afford to paint the wall? Explain your reasoning.


Expand and simplify (x+1)(2x+3).


Factorise 2c2 + 8c + 8.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning