The expansion of (1+x)^4 is 1 + 4x +nx^2 + 4x^3 + x^4. Find the value of n. Hence Find the integral of (1+√y)^4 between the values 1 and 0 (one top, zero bottom).

Using Binomial expansion or Pascal's triangle, expand (1+x)^4 to get 1+4x+6x^2+4x^3+x^4. Then, by substituting √y for x, get 1 + 4y^1/2 + 6y +4y^3/2 +y^2. Then, using the rules of integration, the expansion is integrated to y + 8/3y^3/2 + 3y^2 + 8/5y^5/2 + 1/3y^3 between the bounds 1,0. substituting in the values gives [1 + 8/3 + 3 + 8/5 + 1/3] - = 7 + 8/5 = 8.6.

TD
Answered by Tutor41123 D. Maths tutor

6649 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By forming and solving a quadratic equation, solve the equation 5*cosec(x) + cosec^2(x) = 2 - cot^2(x) in the interval 0<x<2*pi, giving the values of x in radians to three significant figures.


Sketch the curve with the equation y=x^2 +4x+4, labelling the points where it crosses or touches the axes.


A curve has parametric equations x=t(t-1), y=4t/(1-t). The point S on the curve has parameter t=-1. Show that the tangent to the curve at S has equation x+3y+4=0.


If f(x)=x^2 and g(x)=5x-11, then what is fgg(x) when x=3?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning