The expansion of (1+x)^4 is 1 + 4x +nx^2 + 4x^3 + x^4. Find the value of n. Hence Find the integral of (1+√y)^4 between the values 1 and 0 (one top, zero bottom).

Using Binomial expansion or Pascal's triangle, expand (1+x)^4 to get 1+4x+6x^2+4x^3+x^4. Then, by substituting √y for x, get 1 + 4y^1/2 + 6y +4y^3/2 +y^2. Then, using the rules of integration, the expansion is integrated to y + 8/3y^3/2 + 3y^2 + 8/5y^5/2 + 1/3y^3 between the bounds 1,0. substituting in the values gives [1 + 8/3 + 3 + 8/5 + 1/3] - = 7 + 8/5 = 8.6.

TD
Answered by Tutor41123 D. Maths tutor

6331 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the point of intersection of the lines y=2x-7 and 4y-2=3x


Given that y = 16x + x^(-1), find the two values of x for which dy/dx = 0


It is given that n satisfies the equation 2*log(n) - log(5*n - 24) = log(4). Show that n^2 - 20*n + 96 = 0.


The function f has domain (-∞, 0) and is defines as f(x) = (x^2 + 2)/(x^2 + 5) (here ^ is used to represent a power). Show that f'(x) < 0. What is the range of f?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning