The expansion of (1+x)^4 is 1 + 4x +nx^2 + 4x^3 + x^4. Find the value of n. Hence Find the integral of (1+√y)^4 between the values 1 and 0 (one top, zero bottom).

Using Binomial expansion or Pascal's triangle, expand (1+x)^4 to get 1+4x+6x^2+4x^3+x^4. Then, by substituting √y for x, get 1 + 4y^1/2 + 6y +4y^3/2 +y^2. Then, using the rules of integration, the expansion is integrated to y + 8/3y^3/2 + 3y^2 + 8/5y^5/2 + 1/3y^3 between the bounds 1,0. substituting in the values gives [1 + 8/3 + 3 + 8/5 + 1/3] - = 7 + 8/5 = 8.6.

TD
Answered by Tutor41123 D. Maths tutor

5920 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can you give an example of using the chain rule for differentiation? Example: Let y=(6 + 2x + 2x^2)^3, find dy/dx.


When finding the turning points of a curve, how can I tell if it is a maximum, minimum or a point of inflection?


1)Simplify sqrt 98 - sqrt 32, givimg your answer in the form k sqrt 2 where k is an integer.


Solve x(5(3^0.5)+4(12^0.5))=(48^0.5) to the simplest form. (4 Marks)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences