Solve the differential equation dy/dx = y/x(x + 1) , given that when x = 1, y = 1. Your answer should express y explicitly in terms of x.

Rearrange differential equation to get 1/x(x+1) dx = 1/y dy. Separate x side into partial fractions where 1/x(x+1) = 1/x - 1/(x+1). Integrate each side. Resulting equation involves natural logs. Substitute in boundary conditions (known values of x and y) to find a value for the integration constant. Simplify the equation on the x side using standard log rules. Raise e to the power of each side of the equation to remove natural logs. Hence, y=2x/(x+1).

AT
Answered by Alexander T. Maths tutor

15814 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of k for which the equation (2k-3)x^2 - kx + (k-1) = 0


(M1) What direction does friction act in? What are the friction equations both generally and in limiting equilibrium? What does it mean for a system to be in equilibrium?


given y = x^2 - 7x + 5, find dy/dx from first principles


Intergrate ln(x) with resepct to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences