(4-2x)/(2x+1)(x+1)(x+3) = A/(2x+1)+B/(x+1)+C(x+3) Find the values of the constants A, B and C

First, multiply throughout by the denominator of the main function to give as follows: 4-2x = A(x+1)(x+3) + B(2x+1)(x+3) + C(2x+1)(x+1) Then, choose values of x which will cause two of the constants to vanish. If x = -3, then the bracket (x+3) will equal 0, eliminating A and B, giving 4-2(-3) = C(2(-3)+1)(-3+1) Solving this gives as follows: (-5)(-2)C = 10 C = 10/10 = 1 If x = -1, then A and C will vanish, giving B(-1)(2) = 6 => B = -3 If x = -1/2, then B and C will vanish, giving A(1/2)(5/2) = 5 => A = 4 This means that the fraction (4-2x)/(2x+1)(x+1)(x+3) = 4/(2x+1) -3/(x+1) + 1/(x+3)

MC
Answered by Michael C. Maths tutor

13784 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Which value of x gives the greatest value of "-x^2+8x-6"


Find the tangent to the curve y=(3/4)x^2 -4x^(1/2) +7 at x=4, expressing it in the form ax+by+c=0.


2(x^2)y + 2x + 4y – cos (PI*y) = 17. Find dy/dx using implicit differentiation.


Find the equation of the tangent of the curve y = (8x)/(x-8) at the point (0,0)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences