Top answers

Further Mathematics
A Level

Use algebra to find the set of values of x for which mod(3x^2 - 19x + 20) < 2x + 2.

The initial quadratic can be either positive or negative so we must solve for both possibilities.

Solving for positive:

3x^2 - 19x + 20 < 2x + 2    =    3x^2 - 21x + 18 < 0

...
JM
11135 Views

z = 4 /(1+ i) Find, in the form a + i b where a, b belong to R, (a) z, (b) z^2. Given that z is a complex root of the quadratic equation x^2 + px + q = 0, where p and q are real integers, (c) find the value of p and the value of q.

a) Need to multiply with conjugate to bring z to form a+ib. => z= z * (1-i)/(1-i) = (4-4i) / 2 = 2-2i

b) z^2 = (2-2i)^2 = 4-8i+4 i^2 = 4-8i-4 = 8i

since z is root of x^2+px+q=0 then z* (c...

HP
6623 Views

Express cos5x in terms of increasing powers of cosx

De Moivre's theorem: (cos5x + isin5x) = (cosx + isinx)5 To get cos5x we will need to expand (cosx + isinx)5 and then take the real parts. Binomial expansion: (cosx + isinx)5

CS
33751 Views

Show, using the focus-directrix property for an ellipse, that PS +PS'=2a where P is a point on the ellipse and S and S' are the two foci.

The focus diretrix property for an ellipse is PS/PD=e. Now this is also the case for the other directrix and focus, so PS'/PD'=e. Now we can rearrange these equations to find a formula for PS +PS', PS +PS...

DL
11096 Views

How do you deal with 3 simultaneous equations? (Struggling with Q7 of AQA specimen paper 1)

If you need to solve them, then you just plug your way through the algebra to get to the answer.

In this question (Q7) you need to find the value of a constant such that there is no solution to the...

JW
3242 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning