Top answers

Maths
A Level

Integrate x*ln(x) with respect to x

First identify that integration by parts is required. Then seperate the integration so u = ln(x)     dv/dx = x then, du/dx = 1/x  v = (1/2)x^2 . And using the integration by parts formula with these subst...

AS
Answered by Ana S. Maths tutor
4205 Views

Derive the following with respect to x1: y=(x1*x2)/(x1+x2).

y is a function of x1 and x2. We are asked to derive y with respect to x1, meaning that x2 remains constant. 

Note that y' is the deriva...

TK
Answered by Thaleia K. Maths tutor
8134 Views

By using the substitution x = tan(u), find the integral of [1 / (x^2+1) dx] between the limits 1 and 0

First we need to change the limits, and by plugging in 1 and 0 to our substitution we find that the limits for u are arctan(1) and arctan(0) (or pi/4 and 0). Then we need to substitute for dx, and by diff...

OW
Answered by Ollie W. Maths tutor
12087 Views

The mass of a substance is increasing exponentially. Initially its mass is 37.5g, 5 months later its mass is 52g. What is its mass 9 months after the initial value to 2 d.p?

M=37.5ekt 52=37.5ek5 52/37.5=e5k ln(52/37.5)=5k (1/5)(ln(52/37.5))=k k≈0.06538 when t=9, M=37.5e9*0.06538 M=67.54

RR
Answered by Riccardo R. Maths tutor
4423 Views

What is the integral of x^(3)e^(x) with respect to x?

This question is looking at integration by parts. Therefore, we need to split the integral into two parts.

Part A will be x3 and Part B will be ex .

Draw 2 columns putt...

JB
Answered by James B. Maths tutor
4696 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning