Top answers

Maths
A Level

A tank is filled with water up to the height H0. At the bottom of the tank, there is a tap which is opened at t=0. How does the height of liquid change with time?(Hint: dH/dt is proportional to -H)

This is a typical C4 differential equation question. The same algorithm could be used for a lot of other problems.

First of all, from the hint we have that dH/dt = -kH (1).

We need to separa...

MB
Answered by Maxim B. Maths tutor
6705 Views

Find the coordinate of the turning point of the curve y = x^2 - 10x + 7, by completing the square

First, we need to complete the square. We take the first part of the equation ignoring the constant ( + 7).  

y = x2 - 10x , we want to change the form of this equation from  x2

JP
Answered by James P. Maths tutor
9377 Views

How do you integrate ln(x) with respect to x?

Rewrite ln(x) as 1ln(x) then integrate by parts.  The formula for integration by parts is  uv' = uv -  vu', here use u = ln(x) and v' = 1.  By differentiating u we get u' = 1/x, an...

AG
Answered by Anthony G. Maths tutor
2856 Views

Differentiate the function f(x) = sin(x)/(x^2 +1) , giving your answer in the form of a single fraction. Is x=0 a stationary point of this curve?

The key concepts to apply in this question will be the product and chain rules, namely: if  f(x)=g(x)h(h), then f'(x)=g(x)h'(x) + g'(x)h(x), and if h(x)=u(v(x)), then h'(x)=u'(v(x))v'(x).

Equivalen...

BC
Answered by Bromlyn C. Maths tutor
4680 Views

Show that: [sin(2a)] / [1+cos(2a)] = tan(a)

We start by expanding out the double trigonometric terms (sin(2a)) using the double angle formula, giving us: [2sin(a)cos(a)] / [1+cos^2(a) - sin^2(a)]. Next we spot that on the denominator (bottom half o...

GH
Answered by George H. Maths tutor
8512 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences