Top answers

Maths
A Level

Find the gradient of the tangent and the normal to the curve f(x)= 4x^3 - 7x - 10 at the point (2, 8)

y = 4x3 - 7x -10The gradient of the function at any point can be found using its derivative:dy/dx = 12x2 - 7The gradient of the function, m1, at (2,8) is equal to the grad...

MP
Answered by Miss P. Maths tutor
5552 Views

if f(x) = 4x^2 - 16ln(x-1) - 10, find f'(x) and hence solve the equation f'(x)=0.

f(x) = 4x2 - 16ln(x-1) -10, f'(x) = 8x - 16/(x-1), so if f'(x)=0, then 8x - 16/(x -1)=0, 8x(x-1) - 16 = 0, 8x2- 8x - 16 =0, 8(x2- x - 2) = 0, x2 - x - 2 = 0, (x...

EB
Answered by Ellie B. Maths tutor
3686 Views

Integrate y=2x^2 +4x-1

To integrate this simple equation add one to the power then divide by the new power for example. 2x^2 becomes 2/3x^3 4x becomes 2x^2 and 1 becomes x plus constant c so the overall integrated equation is 2...

GB
Answered by George B. Maths tutor
3716 Views

Find the exact value of dy/dx at (-2,4) of the curve C: 4x^2 -y^2 + 6xy + 2^y = 0

First notice that this is an equation that will require implicit differentiation since C cannot be explicitly written in terms of either x or y. Thus we must differentiate each term with respect to x:-the...

SD
Answered by Saskia D. Maths tutor
4565 Views

You are given the equation y=x^2. Determine whether or not the equation has any maximums or minimums and identify them (whether they are maximums or minimums).

The question has given us a function and wants us to determine whether or not any maximums/minimums exist (and if so identify then). We know maximums/minimums occur when the derivative of the equation is ...

LM
Answered by Lana M. Maths tutor
3074 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning