Find the exact value of dy/dx at (-2,4) of the curve C: 4x^2 -y^2 + 6xy + 2^y = 0

First notice that this is an equation that will require implicit differentiation since C cannot be explicitly written in terms of either x or y. Thus we must differentiate each term with respect to x:-the first term is easy as it is in terms of x only, so d(4x^2)/dx = 8x-the second term isn't too hard as it is terms of y only, so d(-y^2)/dx = d(-y^2)/dydy/dx [by chain rule] = -2ydy/dx-the third term is tricker as it is a product of x and y, so d(6xy)/dx = 6xd(y)/dx+6d(x)/dxy [by product rule] = 6xdy/dx + 61y = 6xdy/dx + 6y-the fourth term isn't too hard again as it is in terms of y, but you need to be familiar with standard differentiation results, so d(2^y)/dx = d(2^y)/dydy/dx = (2^y)ln2dy/dx [by standard result]So the final answer for C differentiated with respect to x is:8x - 2ydy/dx + 6xdy/dx + 6y + (2^y)ln2dy/dx = 0Substituting the value of (x,y) = (-2,4) gives:8(-2) - 2(4)dy/dx + 6(-2)dy/dx + 6(4) + (2^4)ln2dy/dx = 0-16 -8dy/dx -12dy/dx +24 +16ln2dy/dx = 08 - 20dy/dx + 16ln2dy/dx = 02 - 5dy/dx + 4ln2dy/dx = 0Now factorising and rearraging gives: dy/dx = 2/(5-4ln2)

Answered by Saskia D. Maths tutor

3189 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0


Integrate 8x^3+4 with respect to x.


The probability function of a discrete random variable X is given by p(x)=x^2 x =1,2,3. Find E(X)


A cubic curve has equation y x3 3x2 1. (i) Use calculus to find the coordinates of the turning points on this curve. Determine the nature of these turning points.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy