Top answers

Maths
A Level

Find the gradient of the function f(x,y)=x^3 + y^3 -3xy at the point (2,1), given that f(2,1) = 6.

Firstly, establish that the correct method to do this is via differentiation: specifically implicit differentiation. To find the gradient, we need to find dy/dx. The differential with res...

DD
Answered by Daniel D. Maths tutor
5311 Views

If f(x) = sin(2x)/(x^2) find f'(x)

As f(x) is in the form of u(x)/v(x) we can apply the rule that f'(x) = (u'(x)*v(x) - v'(x)*u(x))/(v(x)2), pulled from the C3 formula booklet.
If u(x) = sin(2x) then u'(x) = 2cos(2x).
...

LR
Answered by Leo R. Maths tutor
3297 Views

The function f (x) is defined by f (x) = (1-x)/(1+x), x not equal to -1. Show that f(f (x)) = x. Hence write down f ^-1 (x).

f(f (x) )= f( (1-x)/(1+x) ) = (1-(1-x)/(1+x))/(1+(1-x)/(1+x))where you replace x by (1-x)/(1+x). Multiply the top and bottom of the fraction by (1+x) to get ((1+x)-(1-x))/((1+x)+(1-x)) which simplifies t...

SP
Answered by Sarah P. Maths tutor
10535 Views

What is the normal distribution and how do I use it?

The normal distribution is a distribution we can use when we know the mean and the standard deviation of a population, to work out probabilities that a certain even will occur.
The main properties of...

CC
Answered by Chantelle C. Maths tutor
3146 Views

Integrate x/((1-x^2)^0.5) with respect to x

x = sin(u), dx/du = cos(u), dx = cos(u) * du,[x/(1-x^2)^0.5)] * dx = [sin(u)/((1-(sin(u)^2))^0.5] * cos(u) * du = [sin(u)/(cos(u)^2)^0.5] * cos(u) * du = sin(u) * duIntegral of sin(u) * du = -cos(u) = -(...

AP
Answered by Andrew P. Maths tutor
4064 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences