Top answers

Maths
A Level

Find a solution for the differential equation dy/dx=exp(-y)*sin2x which passes through the origin.

First separate the variables so that the left side of the equation is an expression only in terms of y and the right side only in terms of x.exp(y)dy=sin2x dxSecondly both sides have to be integrated to o...

FB
Answered by Felix B. Maths tutor
3626 Views

Solve 2^(3x-1) = 3

23x - 1 = 3log2(23x-1) = log2(3)3x - 1 = log2(3)3x = 1 + log2(3)x = 1/3 + 1/3log2(...

JB
Answered by Jacob B. Maths tutor
5304 Views

Express cos2x in the form a*cos^2(x) + b and hence show that the integral of cos^2(x) between 0 and pi/2 is equal to pi/a.

Apply the double angle formula to cos2x to yield the requested result.
cos2x = 2cos^2(x) - 1
Spot that the question asks us to prove the value of cos^2(x) when integrated, and that we can move t...

LP
Answered by Louis P. Maths tutor
5234 Views

Solve the differential equation dx/dt = -2(x-6)^(1/2) for t in terms of x given that x = 70 when t = 0.

First, manoeuvre variables so that we can integrate the equation.
1/(x-6)^(1/2) dx = -2 dt
Integrate the equation and add the constant.
2(x-6)^(1/2) = -2t +c
Solve for t.
t = -(x-...

LP
Answered by Louis P. Maths tutor
5507 Views

If y = sec(z)tan(z)/sqrt(sec(z)) then find the indefinite integral of y with respect to z.

Using the substitution u = sec(z)=> du = sec(z)tan(z) dz.So, the integral ∫ y dz = ∫ sec(z)tan(z)/sqrt(sec(z)) dz=> ∫ y dz = ∫ 1/sqrt(u) du = 2sqrt(u) + C = 2sqrt(sec(z)) + C.

JM
Answered by Jordan M. Maths tutor
7009 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning