Top answers

Maths
All levels

What are the missing numbers in this sequence? 2, 4, 8, ..., 32, ..., 128

First, we need to look for a pattern. What are we needing to do to get from one number to the next? As you can see, we are multiplying each number by two to get the next number. 8 multiplied by 2 is 16, a...

OU
28926 Views

The velocity of a particle is given by the equation v= 4t+cos4t where t is the time in seconds and v is the velocity in m s ^-1. Find the time t when the particle is no longer accelerating for the interval 0≤t≤2.

This problem tests two key sub-topics in calculus, kinematics and the chain rule. Firstly, you must realise that the derivative of a velocity function will give you the acceleration function. So by findin...

MB
Answered by Marc B. Maths tutor
6546 Views

Find the points at which the equation y = x^2 - 12x + 35 intersects the x-axis.

To find the points at which an equation intersects the x-axis, we first need to factorise the equation to be able to find the solutions. To do this, we consider the general form of a quadratic equation a...

SH
Answered by Sam H. Maths tutor
6274 Views

Differentiate y= exp(cos^2(x)+sin^2(x)) by using the chain rule.

First of all instead ,we'll define the chain rule , thus y can be rewritten as y = f (g(x)) , where f(x) = exp (x) and g(x) = cos^2(x) + sin^2(x). Therefore let y = f(u) , dy/dx = dy/du * du/dx , which ...

AJ
Answered by Ayman J. Maths tutor
4132 Views

The point P lies on a curve with equation: x=(4y-sin2y)^2. (i) Given P has coordinates (x, pi/2) find x. (ii) The tangent to the curve at P cuts the y-axis at the point A. Use calculus to find the coordinates of the point A.

To find the x coordinate of point P, we simply substitute in the value of y at P into the equation of the curve and solve for x = 4pi^2. (ii) To start, we can differentiate x with respect to y, by using t...

TF
Answered by Tobias F. Maths tutor
14285 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning