Top answers

Maths
All levels

A curve has an equation of y = 20x - x^2 - 2x^3, with one stationary point at P=-2. Find the other stationary point, find the d^2y/dx^2 to determine if point P is a maximum or minium.

We know that a stationary point is found when the gradient of the curve is equal to zero, this is found by equaling the derivative (dy/dx) equal to zero. Differentiating the expression will find a quadrat...

GS
Answered by Georgia S. Maths tutor
2816 Views

Solve the equation (x+2)/(x-3)=(x-6)/(x+1) for x.

We need to multiply both sides by the denominator (the bottom of the fraction) in both fractions so we get:(x+2)(x-3)(x+1)/(x-3)=(x-6)(x-3)(x+1)/(x+1)Now, we can see that we can cancel each fraction to ge...

TH
Answered by Tom H. Maths tutor
2667 Views

Consider the infinite series S=Σ(from n=0 to infinite) u(down n) where u(down n)=lim (from n π to (n+1) π) ((sin t)/t) dt. Explain why the series is alternating.

For the first part of the question we need to try and understand what is actually happening – we have the sum of an integral – where we are summing a sequence of definite integrals. So when n = 0 we have ...

SD
Answered by Stuart D. Maths tutor
5514 Views

Find an equation of the curve with parametric equations x=3sin(A) and y=4cos(A), in the form bx^2+cy^2=d.

x2=9sin2(A) and y2=16cos2(A)Since sin2(A)+cos2(A)=116x2+9y2=16 x 916x2+9y2=144

PV
Answered by Pranav V. Maths tutor
3408 Views

A shop sells only Apples, Bananas and Mangos. The ratio of Apples to Bananas is 5:11. The next shopper will choose one piece of fruit at random. The probability that they buy a Mango is 0.2. What is the probability that they buy an Apple?

We have the probability of choosing a Mango is 0.2 so the probability of choosing an Apple or Banana is 1-0.2=0.8.Next we use the ratio 5:11 to see that for every (5+11)=16 Apples or Bananas, 5 will be Ap...

GM
Answered by Gregor M. Maths tutor
3361 Views

We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences