Over a million students use our free study notes to help them with their homework
y= -4x-1y2 = (-4x-1)2 = 16x2 +8x +1y2 +5x2 +2x = 0lets substitute what we found y2 equal to earlier, which gives us(16x2...
To solve this we must use integration by parts: int(udv) = uv - int(vdu) (1) Hence let u = ln(x), dv = dx => du=(1/x)dx, v=x, and now using (1) and substituting values we obtain int(ln(x)dx) = ln(x)x -...
Integration can be viewed in many ways. The most common way to interpret an integral is to take the area under the curve you would like to integrate. For example Draw y=x, limit between 0 and 1, shade...
Equation 1) x2 + y2 = 25 Equation 2) y - 3x = 13 First you need to substitute a variable so there is only one unknown in the equation: 2) y = 13 + 3x Substituting this into equation ...
To integrate this we need to use the chain rule, substituting cos2x = u Integral becomes: u2sin32x dxChain rule: dy/dx = du/dx dy/du du/dx = -2sin2x --> dx = -1/2sin2x du Substitu...
←
784
785
786
787
788
→
Internet Safety
Payment Security
Cyber
Essentials
Comprehensive K-12 personalized learning
Immersive learning for 25 languages
Trusted tutors for 300 subjects
35,000 worksheets, games, and lesson plans
Adaptive learning for English vocabulary
Fast and accurate language certification
Essential reference for synonyms and antonyms
Comprehensive resource for word definitions and usage
Spanish-English dictionary, translator, and learning resources
French-English dictionary, translator, and learning
Diccionario ingles-espanol, traductor y sitio de apremdizaje
Fun educational games for kids