integrate cos^2(2x)sin^3(2x) dx

To integrate this we need to use the chain rule, substituting cos2x = u Integral becomes: u2sin32x dxChain rule: dy/dx = du/dx dy/du du/dx = -2sin2x --> dx = -1/2sin2x du Substituting into the equation u2sin32x * -1/2sin2x du Simplifies to: -2u2sin22x duWe know that cos2x + sin2x =1 Integral = -2u2(1 - cos22x) du Substituting -> -2u2 + 2u4 duIntegrating this: -2( 1/3u3 - 1/5u5) + c Substituting u back into the equation: cos52x/10 - cos32x/6 + c


LW
Answered by Lucy W. Maths tutor

7411 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following... f(x)= 5x^4 +16x^2+ 4x + 5


Given that y = 16x + x^-1, find the two values of x for which dy/dx = 0


Find the area between the curve y = 8 + 2x - x^2 and the line y = 8 - 2x.


if f(x) = 7x-1 and g(x) = 4/(x-2), solve fg(x) = x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning