Top answers

Maths
All levels

Prove that the indefinite integral of I = int(exp(x).cos(x))dx is (1/2)exp(x).sin(x) + (1/2)exp(x).cos(x) + C

Starting with the initial integral of int(exp(x).cos(x))dx we can see that this is going to have to be integrated by parts. This states that the integral of (u . dv/dx)dx is equal to u.v - int(v . du/d...

SA
Answered by Sammy A. Maths tutor
5901 Views

A curve has the equation y = x^4 - 8x^2 + 60x + 7. What is the gradient of the curve when x = 6?

To find the gradient of any curve, we take the derivative. So in this case, we need to take dy/dx. We do this by multiplying the term by the power on x, and then lowering the power by one. For example, fo...

EH
Answered by Elizabeth H. Maths tutor
5641 Views

Integrate xsin(x) by parts between the limits of -pi/2 and +pi/2

Let u = x and dv/dx = sin(x),

By using the general expression of:

integral(u multiply dv/dx)dx = [u multiply v] - integral(v multiply du/dx)dx, and by realising that:

MB
Answered by Matthew B. Maths tutor
3584 Views

Differentiate x^2+6x+1

All we do here is break down into three parts: x2, 6x & 1.x2 becomes 2x as we multiply by the power and then decrease the power by one.6x becomes 6 and 1 becomes 0.So alltogether...

SI
Answered by Samuel I. Maths tutor
4428 Views

find the definite integral between limits 1 and 2 of (4x^3+1)/(x^4+x) with respect to x

first notice the integral is in the form f'(x)/f(x), and indefinite integrals of this form are ln|f(x)|+c.
therefore the integral is [ln|x4+x|] between limits 1 and 2.
subbing in li...

TD
Answered by Tutor22645 D. Maths tutor
4373 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning