Find the gradient of y=6x^3+2x^2 at (1,1)

In order to find the gradient of the curve at (1,1), we must first differentiate the equation of the curve. To do this, multiply the coefficient of x by the power of that same x. Then subtract one from the power. (d/dx)(6x^3)=(36)x^(3-1)=18x^2. While (d/dx)(2x^2)=(22)x^(2-1)=4x. Therefore, the derivative of the equation is (dy/dx)=18x^2+4x.

To find the gradient of the equation at (1,1), substitute x=1 into the derivative. 18(1)^2+4(1)=22. So the gradient of y=6x^3+2x^2 at (1,1) is 22.

N.B. In tutorials I will use a whiteboard for my workings.

BB
Answered by Ben B. Maths tutor

5195 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block of mass 5kg is at rest on a smooth horizontal table, and connected to blocks of 3kg and 4kg which are hanging by strings via pulleys on either end of the table. Find the acceleration of the system and the tension in each string.


Find X log(x)=4 Base 10


Using the substitution of u=6x+5 find the value of the area under the curve f(x)=(2x-3)(6x+%)^1/2 bounded between x=1 and x=1/2 to 4 decimal places.


a curve has an equation: y = x^2 - 2x - 24x^0.5 x>0 find dy/dx and d^2y/dx^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning