Find the gradient of y=6x^3+2x^2 at (1,1)

In order to find the gradient of the curve at (1,1), we must first differentiate the equation of the curve. To do this, multiply the coefficient of x by the power of that same x. Then subtract one from the power. (d/dx)(6x^3)=(36)x^(3-1)=18x^2. While (d/dx)(2x^2)=(22)x^(2-1)=4x. Therefore, the derivative of the equation is (dy/dx)=18x^2+4x.

To find the gradient of the equation at (1,1), substitute x=1 into the derivative. 18(1)^2+4(1)=22. So the gradient of y=6x^3+2x^2 at (1,1) is 22.

N.B. In tutorials I will use a whiteboard for my workings.

BB
Answered by Ben B. Maths tutor

5217 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate log(x) or ln(x)?


Solve x^2 > |5x - 6|


Find the exact value of the integral of (2+7/x), between x=1 and x=e. Give your answer in terms of e.


Solve the following pair of simultaneous equations: 2x - y = 7 and 4x + y = 23


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning