Find the gradient of y=6x^3+2x^2 at (1,1)

In order to find the gradient of the curve at (1,1), we must first differentiate the equation of the curve. To do this, multiply the coefficient of x by the power of that same x. Then subtract one from the power. (d/dx)(6x^3)=(36)x^(3-1)=18x^2. While (d/dx)(2x^2)=(22)x^(2-1)=4x. Therefore, the derivative of the equation is (dy/dx)=18x^2+4x.

To find the gradient of the equation at (1,1), substitute x=1 into the derivative. 18(1)^2+4(1)=22. So the gradient of y=6x^3+2x^2 at (1,1) is 22.

N.B. In tutorials I will use a whiteboard for my workings.

BB
Answered by Ben B. Maths tutor

4968 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(1.) f(x)=x^3+3x^2-2x+15. (a.) find the differential of f(x) (b.) hence find the gradient of f(x) when x=6 (c.) is f(x) increasing or decreasing at this point?


integrate 1/((1-x^2)^0.5) between 0 and 1


Find the value of (cos(x) + sec(x))^2 with respect to x when evauated between pi/4 and 0


Explain the chain rule of differentiation


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning