Write y = x^2 + 4x + 6 in the form y = (x + a)^2 + b. What is the minimum value of y?

This is an example of completing the square. Notice that when we expand y = (x + a)^2 + b we get y = x^2 + 2ax + a^2 + b. By comparing coefficients (ie, making sure the number x is multiplied by and the constants are the same on both sides), we can see that: 2a = 4, a^2 + b = 6. Solving the simultaneous equations: 2a = 4 -> a = 2, a^2 + b = 6 -> 2^2 + b = 6 -> b = 2, So y = (x + 2)^2 + 2. As the square of a number is never less than 0, the minimum of y is when (x + 2)^2 = 0, ie y = 0 + 2 = 2.

NS
Answered by Naomi S. Maths tutor

7768 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

given that (x+8)^2-62=ax^2+bx+c find the values of a,b and c (3 marks)


Nadia has £5 to buy pencils and rulers. Pencils are 8p each. Rulers are 30p each. She says “I will buy 15 pencils. Then I will buy as many rulers as possible. With my change I will buy more pencils.” How many pencils and how many rulers does she buy?


Find the length of the longest side of a right angled triangle with the two smaller sides equal to 8 and 15.


How do I find the roots of a quadratic equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning