Write y = x^2 + 4x + 6 in the form y = (x + a)^2 + b. What is the minimum value of y?

This is an example of completing the square. Notice that when we expand y = (x + a)^2 + b we get y = x^2 + 2ax + a^2 + b. By comparing coefficients (ie, making sure the number x is multiplied by and the constants are the same on both sides), we can see that: 2a = 4, a^2 + b = 6. Solving the simultaneous equations: 2a = 4 -> a = 2, a^2 + b = 6 -> 2^2 + b = 6 -> b = 2, So y = (x + 2)^2 + 2. As the square of a number is never less than 0, the minimum of y is when (x + 2)^2 = 0, ie y = 0 + 2 = 2.

NS
Answered by Naomi S. Maths tutor

7530 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show (4+5/7) - (2+1/3) as a single mixed fraction.


Bob and Bill have 50 sweets to share in the ratio 4:6 respectively. how many do they each get?


How do you solve a quadratic equation? eg: x^2 + 2x - 8


Solve the linear equation 12x - 4 = 3x + 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning